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Received 15 July 1986, in final form 11 March 1987 

Abstract. The supersymmetric massless states of a relativistic extension of Witten’s super- 
symmetric quantum mechanics are shown to correspond to Abelian gauge fields realised 
by antisymmetric tensors. The massive states, which are only partially supersymmetric, 
include spin-1 and spin-0 particles. In particular the Maxwell and Proca fields are obtained 
from N = 2 supersymmetric relativistic mechanics by first quantisation in much the same 
way as the Dirac theory arises in the N = 1 case. The particles may be coupled supersym- 
metrically to external scalar and complex Hermitian tensor fields. The latter reduce in 
special cases to the Riemannian metric of external gravitation and the Kahler metric implied 
by a vector field coupling. All the couplings exhibit a quadrupole characteristic of the 
particles. In particular supersymmetry requires their electric charge and magnetic dipole 
moment to vanish, and there is no coupling to torsion in Riemann-Cartan spacetime. 
Quantisation in external fields yields covariant generalisations of the classical tensor field 
equations. Finally classical equations of translational and spin motion involving only real 
quantities are obtained from the Heisenberg equations. 

1. Introduction 

The status of spacetime (PoincarC) supersymmetry as a fundamental symmetry of the 
physical world is still unclear. Despite the unique mathematical virtues of the super- 
string theories they can be reconciled with experiment only if it is assumed that 
supersymmetry is broken at some stage. As a matter of fact, considerable effort has 
been devoted to the study of spontaneous supersymmetry breaking. The complexity 
of the problem prompted the invention of model theories, among which Witten’s 
supersymmetric quantum mechanics (Witten 1981) figures most prominently. This 
model and its higher-dimensional generalisations are interesting also from the purely 
mathematical point of view owing to the existence of a new topological invariant, the 
Witten index (Witten 1982), which allows concise derivation of the Atiyah-Singer 
index theorem in various circumstances ( Alvarez-GaumC 1983). Another active area 
of research in these models has been the associated Nicolai maps (Nicolai 1980a, b)  
and their fermion sector structure (Claudson and Halpern 1986, Graham and Roekaerts 
1986). 

The Witten model lies also at the basis of the present paper. However our objective 
is quite different from that of the works mentioned above. The relativistic supersym- 
metric quantum mechanics expounded below is not considered as a ‘model’ of field 
theory in (0+ 1) dimensions but rather as the correct description of some fundamental 
particles of nature at the first quantised level. Supersymmetry with respect to the affine 
relativistic evolution parameter, henceforth called proper-time supersymmetry, is the 
main ingredient of this approach. It is not a widely appreciated fact that proper-time 
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supersymmetry (to be distinguished from spacetime supersymmetry) is indeed realised 
in nature as exemplified by the Dirac particle (DiVecchia and Ravndal 1979, Ravndal 
1980, Rumpf 1982, 1986a). The Dirac equation is the supersymmetry condition on the 
states of the quantum theory implied by the pseudoclassical Lagrangian 

L =+(a’- i t l ) .  (1.1) 

This Lagrangian exhibits a global simple supersymmetry involving the position coordin- 
ate x and the real anticommuting 4-vector 6. Upon quantisation, the components 6“ 
become essentially the Dirac matrices y a .  (It  should be noted that there exist super- 
symmetric Lagrangians different from (1.1) yielding the Dirac particle dynamics. 
Historically the first such Lagrangian proposed was an extension of the reparametrisa- 
tion-invariant scalar particle Lagrangian L = ( a’)”* and possessed even local supersym- 
metry (Berezin and Marinov 1977). The affine parametrisation implied by (1.1) yields 
by far the simplest theory, however.) 

The starting point of the present paper is the N = 2 supersymmetric extension of 
the Lagrangian (1.1) 

L = +i* - i t*(  (1.2) 

where the 5” are odd elements of a Grassmann algebra with involution (denoted by 
an asterisk). In one dimension (1.2) is the basis of the Witten model. If x takes values 
not in spacetime, but some ‘internal’ Riemannian manifold, (1.2) is the prototype of 
the N = 2 supersymmetric non-linear U model in (0+ 1) dimensions (the reader should 
be cautioned that the same model is also called N = 1 supersymmetric by some authors). 
Of course in both cases one obtains a non-trivial theory only after the introduction of 
supersymmetric couplings. For the relativistic system one suspects that quantisation 
will yield the classical field equations describing spin-1 particles, as the Lagrangian 
(1.2) involves twice as many ‘spin variables’ as (1.1). Interesting questions then arise. 
What are the external field couplings compatible with proper-time supersymmetry, 
what is their physical interpretation, and what information about the classical limit of 
the particle dynamics can be gained from the supersymmetric formalism? This paper 
aims at a thorough discussion of these issues. 

In 0 2 of this paper the relativistic generalisation of the Witten model in the 
free-particle case is introduced. It turns out that the wavefunctions are inhomogeneous 
differential forms (or antisymmetric tensor fields) obeying either a Lorentz or Bianchi 
type condition. Each condition implies partial supersymmetry of the states. Fully 
N = 2 supersymmetric states exist only in the case of vanishing mass and correspond 
to Abelian gauge fields. The states of definite ‘fermion’ number correspond to particles 
of spin 0 and spin 1 (helicities 0 and 1 in the massless case). In the subsequent sections 
all possible supersymmetric couplings to external fields are studied. The simple case 
of an external scalar field treated in § 3 serves to demonstrate the consistency of the 
quantisation condition involving one supersymmetry generator under quite general 
circumstances. Section 4 is devoted to the external gravitational field. The coupling 
to an external vector field (tentatively identified with the Maxwell field) investigated 
in § 5 turns out to be rather involved. The electric charge and magnetic dipole moment 
of the particle have to vanish, but it may have a non-trivial electric quadrupole moment. 
The coupling can be described in purely geometrical terms upon the introduction of 
a complex Kahler metric involving the field strength of the vector field. Both the 
gravitational and vector field coupling are special cases of an external complex Her- 
mitian metric which is the subject of § 6. We derive the classical field equations in an 
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external field from a variational principle (whose existence is a consequence of 
supersymmetry) and discuss the classical limit of the Heisenberg equations of motion 
for the position and spin observables. For the proper identification of this limit it will 
be helpful to let Planck's constant A appear explicitly in all equations. In the final 
section we assess the physical relevance of our results, point out a remarkable confirma- 
tion of them in quantum field theory and propose possible areas for future investigation. 
An appendix serves to illustrate the complications that result from the minimal elec- 
tromagnetic coupling of vector fields. 

2. Relativistic N = 2 supersymmetric quantum mechanics: the free particle 

The relativistic generalisation of the Witten model (Witten 1981) is straightforward if 
the time coordinate xo is treated on equal footing with the space coordinates and an 
affine parameter s (which in the massive case becomes r / m ,  T being the proper time) 
is introduced. The coordinates x a ( s ) ,  ["(s), t * " ( s )  may be combined into the 'super- 
coordinates' 

(2.1) Xa(S, 6, 6*) = x a ( s )  + e&*"( s )  + t"( s) 6* + y"(s )00* .  

The pseudoclassical Lagrangian for a free superparticle is 

Lo=;  d6 d0* VabDXaD*Xb 5 
- _  - : 7 ) a b [ x a x b  -i(&*"ib - i*atb) + y a y b ]  

where 

a a 
a6* as 

D* = i6- 

are the supercovariant derivatives with respect to the superspace transformations 
s + s + i (  OE* - E O * ) ,  8 + 6 + E ,  6* + 8* + E *  that correspond to the off-shell supersym- 
metry of (2.3). In the graded algebra defined by the Poisson bracket 

(which can be derived as a generalised Dirac bracket (Dirac 1958, Casalbuoni 1976) 
just as in the N = 1 case (Rumpf 1982)) Lorentz transformations are generated by 

(2.7) 

(2.8) 

J a b  = L a b  + S o b  

L a b  = X a p b  - x b p a  

Note that the orbital angular momentum Lab and the spin angular momentum Sab are 
separately conserved, but that only their sum J a b  is invariant under supersymmetry 
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transformations. For later use we introduce the generators Tab of dilations and 'shears' 
of the spin variables 

Tab = t a l * b  + (bt*a (2.10) 

[(", T b c }  = -i( + vab( ' ) .  (2.11) 

Tab will be interpreted as a quadrupole moment tensor in 00 4 and 5. 
In canonical quantisation the Poisson bracket is replaced by the graded commutator 

multiplied by i/ h. (For a discussion of quantisation directly in superspace we refe,r 
the reader to de kcfirraga et a1 (1986).) Consequently the quantum spin variables (" 
and ( [ * a ) A =  F a  obey the Clifford algebra relations 

{.p, F b }  = h p .  (2.12) 

Therefore the representation of the spin degrees of freedom at the quantum level is 
sixteen dimensional. This representation is best derived in the form of a 'pseudo- 
Schrodinger' representation on the space of analytic functions of the ( variables. Any 
such function is of the form 

f(5) = ~ ( O ' + 5 ' ~ / l , + 1 ~ ' f ~ ~ i j ) + - 5 ' 5 , ( k ~ i : k ' + - 1  6 I 6 J 6 k '$Ai,kl I (4 )  (2.13) 

where the A'p' take values in a Grassmann algebra and transform as antisymmetric 
tensors under the Lorentz group (such that f is invariant). Only later shall we restrict 
ourselves to complex-valued A"'. The natural operator realisation of i and i' is given 
by 

.pm = h1'*5"f(t) (2.14) 

(2.15) 

The scalar product in this representation space is determined (up to a constant factor) 
by the requirement that 

1 
2! 3! 4! 

1/2  ab a 5*"'f(t)=h rl a f ( 5 ) .  
a t  

be the adjoint of i: 
(2.16) 

The representation just constructed is naturally extended to one comprising also the 
translational degrees of freedom by letting the A become tensor fields on spacetime. 
Then the 4-momentum operator is given by 

$a = iha, (2.17) 
and is self-adjoint with respect to the scalar product 

(2.18) 

The 'wavefunction' f may be equivalently represented by the direct sum of the tensor 
fields A'p'. In the following we shall employ for conciseness the calculus of differential 
forms, in which this direct sum is denoted as an inhomogeneous differential form: 

1 1 $ = A"'+Ai" d x ' + y A f '  dx '  A dxJ +-A$ dx '  A dxJ A dx' 
2.  3! 

1 
+;A$'l dx'  A dx' A dxk A dx'. (2.19) 
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We now restrict ourselves to complex-valued fields AtP' and thus identify the quantum 
mechanical representation space of our system with the exterior algebra E (  M )  of 
complex differential forms on Minkowski space. The scalar product of (2.18) and 
(2.16) implies the standard scalar product in E ( M )  (in the following we suppress the 
superscript ( p)  when this is possible without ambiguities): 

I 4 1  
p = o  p .  (((I, I +?) = I d4x TA: , ,,,(x)A'l. ' ~ ( x )  E d4x +f . ((I2. (2.20) 

Equations (2.14) and (2.15) imply that the action of 9 and 9' on ((I is 

?+ = h'" dx" A + 
?'((I 5 h':' dx" J((I 

(2.21) 

(2.22) 

i.e. the exterior and interior product, respectively, with dx". It can be checked that 
the operators Sab correspondi2g to (2.9) indeed generate Lorentz transformations of ((I. 

The supercharges Q and Qt corresponding to the pseudoclassical supersymmetry 
generators for the Lagrangian (2:2) are proportional to the exterior derivative d and 
the co-derivative 6, respectively: 

(2.23) 

(2.24) 

For the component fields this implies 

4: ( A ,  AI, ' 1 1 ,  AIJ~ ,  Auk,)+ ih3/2(0, ',I, 2A[J,l]9 3A[Jk,#], 4A[,kf, I ] )  (2.25) 

Q': (A, AI, A,, Ayk, Ayki) + ifi3/2(Ab,b, Abl,b, AbB,b, Abyk,b, 0). (2.26) 

The last operator we have to identify is the free Hamiltonian fi = j 2 / 2  generating the 
evolution in the parameter s. It is obviously realised by 

fi = - ( h 2 / 2 ) 0 .  (2.27) 

Note that the well known formula 

C i=d6+6d  (2.28) 

corresponds exactly to the basic N = 2 supersymmetry relation 

2hf i  = @++ 6'6. (2.29) 

Experimental evidence suggests that physical states obey a mass-shell condition 

fi+ = -(m2/2)+ m 2  2 0. (2.30) 

However, this condition is not sufficient for the identification of physical states since 
we note that the scalar product (2.20) is indefinite even with the condition (2.30) (and 
even if restricted to positive frequency wavefunctions). This defect can be remedied 
in two possible ways. The first possibility is to impose the Lorentz condition 

S*=O (2.31) 

on the wavefunctions. It is then easy to show using (2.26) and the Fourier transform 
that the scalar product (2.20) restricted to the subspace defined by (2.31) is positive 
definite for m2 > 0 and positive semidefinite for m 2  = 0, provided we choose the metric 
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signature (- + + +). (With the opposite signature convention, the scalar product (2.20) 
has to be modified by multiplying the summands with (-1)'. This corresponds to a 
slightly different operator repre2entation 2f the Grassmann variables, e.g. 5" = 

dx" A ,  p' = -ih"2 dx" L, Q = h 3 / 2  d, Q' = h3'26.) In the massless case positive 
definiteness can be achieved by forming the quotient with respect to the subspace 
defined by the equations 

+ = d h  6 dA = O .  (2.32) 

Of course the operation $ + $ + dh on massless antisymmetric tensor fields is just a 
gauge transformation according to the usual terminology, and forming the quotient 
with respect to (2.32) corresponds to removing the remaining gauge freedom after the 
Lorentz gauge condition has been imposed. In the supersymmetric formalism the same 
state of affairs is described as follows. Massive physical states are partially supersym- 
metric, i.e. they obey 

6) = 0. (2.3 1 ') 

The action of the second supersymmetry generator 6 leads out of the physical state 
space. In the massless case, however, this action amountsjust to a gauge transformation, 
and therefore the gauge-invariant states obtained by forming equivalence classes are 
fully supersymmetric. 

The other possible definition of physical states is related to the one just discussed 
by Hodge duality and amounts to exchanging the roles of 6 and 6'. As the only 
difference between the two representations is the parity of their states, we shall in the 
following stick to the quantum subsidiary condition (2.3 1). 

If m 2  # 0, equations (2.30) and (2.31) follow from a variational principle based on 
the action 

(2.33) 

= -+( d$ 1 d$) - ( m2/2 h *)( + I 4 )  + surface terms. (2.34) 

It has been shown by Capri and Kobayashi (1985a) that (2.34) and its 'dual' version 
(the kinetic operator Sd replaced by dS) are the only possible actions for antisymmetric 
tensor fields with mass. Moreover the operators in the corresponding Lagrange densities 
are, up to a factor l /m2,  each other's Klein-Gordon divisors (Capri and Kobayashi 
1985b): 

(2.35) 

If  m2 = 0, the action (2.34) is gauge invariant and implies only the Maxwell-like equation 

ad$ = 0 (2.36) 
which has to be supplemented by the gauge condition (2.31) for consistency of the 
first quantisation. 

It is straightforward to determine the particle content of the theory defined by 
(2.34) for m2 f 0, since in this case the little group of the PoincarC group is O(3) and 
it suffices to count the number of independent components of +. The result is two 
spin-0 particles (A'" and A'3') and two spin-1 particles (A"' and A ( 2 ) ,  the former 
being the well known Proca field). A'4' has no dynamics at all. In the massless case 
one counts the number of independent components of the field strength d$ (Sezgin 
and van Nieuwenhuizen 1980, Tokuoka 1982) and finds that A"' and A"' describe 
helicity-0 particles, while A(3)  does not propagate and A(4) drops out again. A"' is, 

S [  $1 = +( +ISd - m2/  h'l $) 

(Sd- m2)(dS - m 2 )  = - m 2 ( 0  - m 2 ) .  
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of course, the Maxwell field of helicity 1 .  The transition from m 2  = 0 to m2 > 0 is thus 
accompanied by the well known phenomenon of 'spin-jumping' (Deser et a1 1981). 

For the sake of completeness we add some remarks on the relationship between 
the present formalism and the N = 1 supersymmetry case. First of all, it is possible 
to obtain the antisymmetric tensor field equations for m 2 > 0  from the Dirac-like 
equation 

A m 
Q&J = ki-4 

2h"* 
(2.37) 

where cy is either 1 or 2 and dl and d2 are the Hermitian and antiHermitian part, 
respectively, of 0. If we set 

4 = A(P)+ BiP+l) (2.38) 

then (2.37) implies (for cy = 1) 

SA'P' = 0 (2.39) 

dB'P+l) = 0 (2.40) 

(2.41) 

(2.42) 

(2.43) 

which together with (2.39) is the desired result. Note that the scalar product (2.20) is 
not positive on the forms 4 obeying (2.42) (they are related on-shell to the wavefunc- 
tions i j  considered above by 4 = i j +  (i/") dij) .  There exists however a different scalar 
product that is positive on positive frequency wavefunctions. This is the scalar product 
associated with the Kahler-Dirac interpretation (Benn and Tucker 1983) of (2.37). In 
this interpretation E ( M )  is split into the direct sum of four representations of spin-; 
(rather than the spin-0Ospin-lOspin-1 @spin-0 of above) and i(2 + pi) act as the 
Dirac matrices y'. Since the 6" and cannot be realised individually in the 
Kahler-Dirac representation, it carries only N = 1 supersymmetry. 

We close with a remark concerning the 'bosonic' and 'fermionic' states with respect 
to the supersymmetry. In the one-dimensional case these are defined by the spaces 
ker 0 = i m b  and ker 0' = imo', re2pectively. In higher dimensions this definition is 
not viable, since E ( M )  = imQOimQ'only in the case of trivial cohomology. Moreover 
cohomology is not even defined in the case of interest here, since Hodge theory requires 
a Hilbert space structure of E (  M )  and has thus been confined to compact Riemannian 
manifolds. Thus the only natural notion of fermion number is the rank p of a 
homogeneous differential form and the fermion number operator is given by 

8 = vUb dx" A dxbi.  (2.44) 

In particular, even forms are 'bosonic' and odd forms 'fermionic'. Note that for the 
free theory the number of spin degrees of freedom determined above is exactly equal 
in the bosonic and the fermionic sector. Thus the formal analogue of the Witten index 
( - l )F  (which can be defined rigorously only in the compact Riemannian case, where 
it yields the Euler number (Alvarez-Gaumi 1983)) vanishes in this case. 
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3. Supersymmetric coupling to a scalar field 

There are three types of external fields-scalar, vector and tensor-to which the system 
described by the free Lagrangian (2.3) may be coupled in a supersymmetric manner. 
We first consider the scalar case. The manifestly supersymmetric Lagrangian is 

Lw = d e  d0*[$DX4D*X4 + W ( X ) ]  (3.1) 

(3.2) 
I 

= f i x 2  - i(t4i: - tat:) + y 2  - 2 W,y4 + w,,bTab] 

implying the equations of motion 

Y4 = w,4 

i4 = i ~ , ~ ~ t ~ .  
The last equation implies 

X4 = -$( W,c W"), ,  +$ W.bca Tb' 

*ab = W,cbTaC - w.c4 Tbc 
T a b  = W,acScb + W,bcSca. 

(3.3) 

(3.4) 

(3.5) 

Eliminating the y variables from the Lagrangian (3.2) via (3.3) we may construct the 
Hamiltonian and the supercharges 

H w  = f p 2 + f  W,,WSc - f W  ,ab Tab 

o w  = ( P a  -i  W,4)5". 

(3.8) 

(3.9) 
We now turn to the quantisation of the system. First we note that 

fi w - i h  - _  - ' ( & . 6 ; + & ~ w ) = - 4 [ h 2 0 -  w , c w c - h ( O W ) ] - h w , 4 b  dx" AdXb,. 
(3.10) 

Comparison with (3.8) shows that the natural factor ordering of the quadrupole moment 
tensor is 

f4b=f([5*(1,Fb]+[5*b, $'I)= h(4dx" ~ d x ~ ~ + f d x ~ ~ d x ~ i - ~ ~ ~ ) .  (3.11) 

It is natural to consider 

QL$ = iR' '2( ha - d W i ) $  = 0 (3.12) 

as the candidate for a consistent quantisation condition. In order to examine the 
positivity of the scalar product (2.20) we recall that in the case of vanishing external 
field an equivalent scalar product for positive freqency solutions with m2 3 0 is provided 
by the charge form 

( $ 1 ,  $ 2 ) ~  du4j4($I ,  $2) (3.13) 5, 
where Z is a spacelike Cauchy hypersurface and 

j4($1, $ 2 )  = i$T * a,$2 
- 

(3.14) 

is the conserved current implied by the mass-shell condition (2.30). Equation (3.13) 
is the scalar product usually considered in second quantisation. The exact relationship 
between (2.20) and (3.13) in the free field case is 

(3.15) * ( * 4 ( l m z ,  *$ , ,2 )  = 2.rr6(m2- mf2)(*Gm2, *+,,,2) 
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where +$,,,2, -t,hm2 are a positive and negative frequency solution, respectively, of the 
mass-shell condition with m2 2 0. Note that 

(3.16) (47, $3 = - ( $ I  9 $ 2 )  

and hence ( , ) is negative for negative frequency solutions. 
In the presence of an external scalar field the charge form is still given by (3.13) 

and (3.14). However, its relationship to the scalar product (2.20) is less straightforward. 
(This fact reflects the well known problem of the identification of a physical Fock 
representation in second quantisation (Rumpf and Urbantke 1978).) We shall therefore 
confine ourselves in the following to the case that W becomes asymptotically constant 
in one time direction, say, in the future. Let us denote now by +$,,,2 those solutions 
of the mass-shell condition that contain only positive frequency contributions 
asymptotically. Then (+$,2, +$,,,2) > 0 if +$,,,2 # 0 and moreover +$,,,2 may be chosen 
such that its charge is finite. Because of the positive frequency character of +$,,,2 it 
may be embedded into a z-analytic family { + $ z } z e c  of solutions of 

(Aw+z /2 )$ ,=0  Qly*z = 0 (3.17) 

such that for Im z > 0 +& vanishes exponentially for t += 00 and its spatial integrability 
is unchanged. Hence 

(++m2-iE,  +$m2-is)  ""c 0 E>0. (3.18) 

Of course for complex z the charge form (3.13) is no longer independent of Z. 
Specifically 

(3.19) +:2-i, * A W + m 2 - i a  - (AWsm2+)* * = -2iE4,*,2-iE . 4 m 2 --IF 

implies 

(3.20) 

(3.21) 

The inequality holds for sufficiently small E. Taking the limit E += 0 we obtain that for 
any spacelike hypersurface Z 

dt  dx $:2 t,bm2 5 0. (3.22) 

Thus the scalar product obeys 

(+m2 I 3 0 (3.23) 
(it will in fact diverge). A similar argument for asymptotic negative-frequency solutions 
- $ m 2  (which may be chosen as + + % 2 )  establishes that ( , ) is positive on both ' q m 2  and 
-$,,,2 for m2 5 0. The latter generate, by definition, the space of physical states. From 
the proof it can be seen that it is even possible to relax the asymptotic condition on 
the external field. All that is really required is the existence of solutions *$,,,2 (or 
alternatively +$,, ,2)  that have the appropriate sign of charge and possess analytic 
extensions f $ m 2 T i E ( + $ m 2 , i E )  fulfilling the necessary fall-off conditions in the future 
(past). This general criterion for the consistency of the partial supersymmetry condition 
(3.12) will be of special interest in the case of an external gravitational field. 
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Supersymmetry also implies in the presence of an external field that both the 
mass-shell condition and the subsidiary condition can be derived from a variational 
principle if m 2 >  0. For the scalar field coupling the action is 

m2 
= - ~ ( ( d + h - ' d W A ) t + b I ( d + h - ' d W A ) $ ) - ~ ( $ l $ ) .  (3.24) 

2h 

In which sense are the pseudoclassical equations of motion (3.3)-(3.5) the classical 
limit of the quantum theory just described? We observe that the Heisenberg operator 
equations of motion implied by the quantum Hamiltonian (3.10) are formally identical 
with the pseudoclassical equations of motion. However, we refrain from considering 
them as a viable classical limit, as we gather from experience that only even observables 
are actually measurable and that the results of measurements are always described in 
terms of real numbers. We propose therefore that the classical limit equations should 
involve only even observables and be obtained by replacing quantum operators by 
their expectation values and expectation values of products by the product of the 
expectation values of their even factors (note that the expectation values of odd 
observables vanish for states of definite F ) .  In this sense equations (3.4), (3.6) and 
(3.7) constitute indeed the classical particle limit of the dynamics of antisymmetric 
tensor fields in an external scalar field. A physical intuition for the observable Tab will 
be developed only in the subsequent sections. 

Finally we note that the standard scalar potential in scalar field theory is related 
to the superpotential W by 

v =  w,,w*c-h(O W ) .  (3.25) 

For given V the solutions W of (3.25) will not necessarily be real. But the reality of 
W is necessary for the self-adjointness of 2, and the definition of the charge form 
(3.13). Thus not every scalar-coupled scalar field can be interpreted in the supersym- 
metric way. 

4. External gravitation 

It is possible to couple the point particle in an N = 2 supersymmetric way to a complex 
Hermitian tensor field of rank 2. In  the present section we confine ourselves to the 
case that the tensor field is real and symmetric. It may thus be identified with the 
pseudoRiemannian metric tensor field g a b (  x)  of general relativity. The corresponding 
manifestly supersymmetric particle Lagrangian is 

L, =; dB de* g a b ( X ) D X a D * X b  I 
=t {goh(x ) [Xaxb - i ( ta i*b  - P a ~ * b ) + y a y h ]  - g a , , c i o ~ b c  

- { c u b } y c T o b  - $ g a b , c d  TobTCd}. (4.1) 

{ c u b }  = f ( g c o , b + g c b , a  - g a b $ ) .  (4.2) 

Here { c u b }  denotes the Christoffel symbol of the first kind 
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The Lagrangian L, is formally identical with the Lagrangian of the one-dimensional 
version of the N = 2 (sometimes also called N = 1 )  supersymmetric non-linear U model 
that has been studied intensively in the literature (Davis et a1 1984). Our point of 
view is, however, that (4.1) describes physical particles in curved spacetime. I t  will 
be shown that upon first quantisation L, yields the minimally coupled antisymmetric 
tensor field equations. 

As in the scalar field case the equation of motion for y 

(4.3) 

may be used to simplify L,. The result is 

which is manifestly scalar with Rabcd the Riemann-Christoffel tensor. The remaining 
equations of motion are 

(4.5) X a + {  ~ ~ } X b X c = - ~ R a b , d X b S c d + l R , k , '  a 65 i J 6 *k 6 * I  

(4.6) 

Thus the supersymmetric particle has the characteristics of a mass pole, dipole and 
quadrupole. 

The Lagrangian (4.1) may be subjected to the canonical formalism. The appearance 
of the general spacetime metric gab requires a change in the definition of the generalised 
Poisson bracket (2.6), as for consistency 

[t", 6 * b }  = igab(x).  (4.7) 
The modification of the bracket is similar to that encountered in the case of simple 
supersymmetric mechanics in curved spacetime. The reader is referred to Rumpf (1982) 
for the details. The Dirac formalism requires the introduction of an orthonormal tetrad 
field e",(x) obeying 

r]&"aePb = gab (4.8) 
and the redefinition of the Poisson bracket in terms of the anholonomic Grassmann 
variables 

6" = e",(x)ta (4.9) 
such that 

(4.10) 

(4.11) 

The Hamiltonian corresponding to the Lagrangian (4.4) is 

H, = ;gadax - aR abed &a&*C6b6*d (4.12) 
where 

(4.13) 
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Note the appearance of the anholonomic components of the Levi-Civita connection 
(also called Ricci rotation coefficients). 

The supercharge Q is 

(4.14) 

In constructing a quantum representation of the pseudoclassical observables by 
operators one has to observe that these operators act on tensor densities of weight a 
rather than on tensor fields. Only in such a representation is the canonical momentum 
operator (2.17) self-adjoint. This fact is, in principle, well known from relativistic 
quantum mechanics in curved spacetime (Rumpf 1982). In the present case it is 
moreover convenient to refer the tensor indices of the wavefunctions to the orthonormal 
tetrad field e", introduced in (4.8) in order to repeat the reasoning employed in 0 2 
for the construction of the state space. We shall thus introduce the wavefunctions 

i = w4* (4.15) 

A,,,,,,, = lgJ1/4emlil . . . eapiPAi, . . . ip 

g det(gab) = -(det eclp)'= -e2 (4.17) 

euCePc = 8,'. (4.18) 

The correct scalar product is then obtained from (2.20) by replacing A'p' by A ( p 1 .  
Obviously we have 

= e" A eua(X) dXa A (4.19) 
2" = cui. (4.20) 

and use components 
(4.16) 

where 

Note that 
~ a ( A u l . . . m ~ e u ~  A .  . . A  cup) =itiA,,...up,aecll A .  . . A  esp. (4.21) 

For the proper definition of the quantum supercharges we observe that there is no 
factor ordering ambiguity in 

(4.22) 

since the connection { } is antisymmetric in the anholonomic indices and because of 
(2.12). On the other hand, it is well known from the scalar particle theory in curved 
spacetime that the correct factor ordering of the scalar part of the mass operator is 

f l ; ~ )  = f i g /  -1/4ia1gll/zgabpblg(-1/4. (4.23) 
This fixes the factor ordering of the supercharge Gg as 

og = p1g1'/4$a1gJ-1/4. (4.24) 
NOW lg11'4$a"l-''4 acts on 4 as 

- * * * - { Aul . . .u ,~ lB)  

(4.25) 
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i.e. as ih times the covariant derivative on $. Therefore 

og$ = ih3/2/g11/4 d$ (4.26) 

where the connection drops out, because it is symmetric in the two lower indices when 
referred to the coordinate basis. Likewise one finds 

6;: A,, 

= i f ~ ' / ~ ( g ( " ~ V  .Aa a 2 . . . m p  (4.27) 

(4.28) 

The quantum Hamiltonian implied by the supercharges is 

f i g  = -(h2/2)/g/"4(dSg+ 6, d)lgl-"4 (4.29) 

(4.30) 

(4.31) 

The two terms in (4.31) correspond exactly to those of (4.30). The correspondence of 
(4.31) with (4.12) becomes obvious upon using the identity 

abcd = - R odbc - acdb (4.32) 

obeyed by the Riemann tensor. Note that the Lichnerowicz Laplacian dS, + S,d differs 
from the minimally coupled d'Alembertian V a V a  by the curvature term 

= -( h2/2)/g1'/4(V,Va -t Rabcd dx" A dXbi dx' A d ~ ~ ~ ) l g l - ' / ~  
= -'l4Xa lgl 1/2 g ab  &1g/ + QRabcdjabscd. 

Rabcd dx" A dXbi dx' A dXdJ= Rab dx" A dXbi-  Rabcd dx" A dx' A dXbi dXdA (4.33) 

where 

Rab = RCabc  

is the Ricci tensor. 
Subjecting physical states to the subsidiary condition 

Q ; I j  = 0 

( $ 1  I $Jg = ($1 1 6 2 )  

one can show the positivity of the scalar product 

(4.34) 

(4.35) 

(4.36) 

in a non-trivial class of external gravitational fields by a straightforward generalisation 
of the argument used in 0 4. We note that the charge form ( , ) is now defined via the 
current density 

(4.37) j a  ( $ 1 ,  $*) = is: * V a  $2.  

Both (4.35) and the mass-shell condition with fip for m 2 >  0 follow from the action 

m 2  
S,[ILI= -f(d+!d$),-Zi;7;(sl$). (4.38) 
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Regarding the Heisenberg equations of motion and the classical limit of the quantum 
theory just derived, similar remarks apply as made at the end of § 4. A new complication 
arises from the fact that the operators with 
which they are multiplied in the quantum version of the equation of motion (4.5). It 
is a simple but lengthy task to work out the exact factor ordering (Rumpf 1982). 
Modulo this factor ordering, however, the Heisenberg equations coincide formally 
with the pseudoclassical equations of motion. In terms of the even observables s a ,  
and Tab they are 

do  not commute with the functions of 

D2X a / ds2 = - $ R  bSrd -k gR ,Ik~'aS'JS k' (4.39) 

DSab/ds  = R,lk[alSI~Sklb] (4.40) 

DTab/ds  = Rl,k(alS'JTk'b). (4.41) 

5. Vector field coupling 

In this section we consider the coupling of the supersymmetric particle to an external 
vector potential A,.  There is only one such coupling yielding a real Lagrangian, namely 

LA = f  dB dO*[DXaD*Xa + q A a ( X ) X a ]  (5.1) I 
=;[X;.'- i ( ( " i z - i " ( z ) + y 2 ] + q A a y a + q A a , d a y b  

- q A a , b ( i a ( * b  + tbi*") - i q A a , b c X a T b ' .  (5.2) 

y"  = - q F a b x b  (5.3) 

(5.4) 

la  = i y a b q F , b , X k ( '  ( 5 . 5 )  

The equations of motion are 

h a b X b  + q2(  F a d F d b q c  + F a b , d F d c ) X b X c  = - $ q F a b , c d X b T C d  + q 2 F b a , k y b d F , d , S J k X 1  

where 

F o b  = A b , a  - A a , b  (5 .6 )  

hab = T a b + q 2 F a c F C b  (5.7) 

Y o b  = q a b + i q F a b  ( 5 . 8 )  

Y a c Y c b  = a a b .  (5.9) 
The appearance of the two 'metrics' hab and Y a b  is somewhat surprising at this point 
and will be traced back in the next section to the existence of a more geometrical 
version of the superspace action implied by (5.1). Note that because of (5.6) y a b  is a 
complex Kahler metric. The two metrics are related by 

cd 
hob = Y z c Y d b ?  . 

A consequence of this equation that will be used later is 
y ( n b )  = h a b .  

(5.10) 

(5.11) 
If A, is tentatively identified with the electromagnetic potential, the weak coupling 
limit of equation (5.4), 

(5.12) x =-1 
a 2 q F a b . c d  TcdXb 
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suggests the interpretation of the coupling constant q as the electric 'quadrupole 
strength' of the particle, qT,b being the electric quadrupole moment tensor. The charge 
and the electric and magnetic dipole moments of the particle all vanish. 

The equations of motion (5.4) and (5.5) can be interpreted in a purely geometrical 
manner. To see this we note that the same equations are obtained if (5.3) is substituted 
into the Lagrangian (5.2). Upon this substitution the Lagrangian becomes (up to a 
total derivative) 

(5.13) 

Let us write (5.13) in a manifestly covaraint way. To this end we have to introduce 
the Levi-Civita connection {bar} of Minkowski space (which vanishes in Cartesian 
coordinates) and to replace ia by i" + {b"c}[bxc and Fah,? by F o b ; ? ,  where the semicolon 
denotes the covariant derivative with respect t o  the Levi-Civita connection. We obtain 
a more compact notation if we define also a complex connection r u b r  by 

L - L  'a '*b- a *b A-2[habX"xb-i~bo(t 6 '! 6 )+qFab,cxaTb'1. 

(5.14) 

This connection is neither torsion-free nor compatible with the Minkowski metric, but 
it is compatible with the metric Yob in the following sense: 

Vcyab = 0. (5.15) 

The bar over the first index of y indicates that the complex conjugate r* of r (which 
is again a connection) has to appear in the correction term with respect to this index 
in the covariant derivative 

VcYfib = Yob.r-r*docYdb - r d b c Y a d *  

Equation (5.15) rests on the cyclic identity 

F u b , c + F c a , b +  Fbc.a = 0. 
The torsion tensor 

S Y b C  := ra [bc]  

obeys the relation 

(5.16) 

(5.17) 

(5.18) 

yadSdbc + Y d a  S*dbc = 0. (5.19) 
The tensorial relations (5.15) and (5.19) d o  not determine r'bc, but only the real part 
of Yadrdbc. 

Introducing the absolute derivative 

we can now write LA in the form 

(5.20) 

(5.21) 

which is manifestly scalar with respect to general (real) coordinate transformations. 
This property of LA implies that the equations of motion are tensorial. Indeed we 
may rewrite (5.4) and (5.5) in the manifestly covariant form 

X" -k {Cc},,XbXc =fiha ' (yc,R*Clk~~'~*l  - Y:,Rc,k,t'(*')ik (5.22) 

D("/ds = 0. (5.23) 
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Here { } h  denotes the Christoffel symbol with respect to the metric h a b ,  and Rabcd is 
the curvature tensor of the connection r: 

Rabcd =rabd,c-rabc,d+ra,cr'bd - r a i d r i b c ,  (5.24) 

We conclude from (5.22) and (5.23) that in the case of a constant electromagnetic field 
the particle follows a geodesic with respect to the metric hab, while its spin and 
'quadrupole' tensors undergo parallel transport in the sense of Minkowski space 
geometry. 

The Hamiltonian formalism based on the Lagrangian (5.13) necessitates a redefini- 
tion of the Poisson bracket (2.6) for similar reasons as observed in the preceding 
section. In order to have 

[t", t*b} = iyab(x)  (5.25) 

we introduce a complex orthonormal tetrad field e,"(x) obeying 

e$"(x)?ab(X)epb(X) = Pap (5.26) 
where pup is a constant diagonal quadratic form with entries +1 or -1 (for sufficiently 
small qFab, pup = T , ~ ) .  Up to now we have considered only real holonomic coordinate 
systems; they were referred to by roman indices. In the following we shall also use 
the complex anholonomic coordinate bases {ea} and {e:}, and their duals. In order 
to avoid confusion we shall denote indices referring to e, (or its dual) by Greek letters 
and indices referring to e: (or its dual) by Greek letters carrying a bar. For instance 

Y 6 p  = Pup 

( Y * ) @  # ( r e p ) *  = (Y*)CrP. 

In the following, the anholonomic Grassmann variables 
6" = en, (x)[" 
t*" = e*a,(x)t*a 

(5.27) 

(5.28) 

(5.29) 

(5.30) 
will play a fundamental role. They have to be considered as canonical variables 
replacing the 6" and t*'. They also appear in the correct bracket, which may be 
derived as the Dirac bracket of the constrained Hamiltonian dynamics defined by 
(5.13) (for a systematic derivation see Rumpf (1982)): 

c +  a~ aB aA aB 

(5.32) 
(5.33) 

It can be checked that this Hamiltonian does indeed imply the equations of motion 
(5.22) and (5.23) using the identity 

PaJPyc = -Prpr*? i r  (5.34) 

0 = (Pb + ip,,A*" ybtP6*')fb 

which is a consequence of (5.15). 
The supercharge Q is given by 

(5.35) 

(5.36) 
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The connection A is not compatible with the metric Yob in the sense of (5.15), but 
yields ( D  denoting the corresponding covariant derivative) 

DCy,, = 2 i q F , ~ , , ~ .  (5.37) 

Incidentally this equation is also useful in the direct verification of [t, Q }  = 0. We note 
also that the relation (5.11) is vital for the direct verification of [Q, Q*} =2iH. 

We now turn to the quantisation of the dynamical system under consideration. As 
in the gravitational case the occurrence of the metric hob in (5.13) requires the 
representation of the quantum states by the tensor densities 

6 = lh/1/4i,b (5.38) 

h := det( h o b )  (5.39) 

and the use of the anholonomic bases introduced in (5.26). Equations (4.19) and (4.20) 
generalise to 

5" = e m A  (5.40) 

6 '"  = e ' * A .  (5.41) 

As to the correct factor ordering of the quantum version of x", we note that only 

(5.42) 

A 

A i  

io = ia + ipapr*' ybiPFY 
operates as a covariant derivative on wavefunctions, namely 

lh11'4;olhl -'I4$ = i h  (v:i,b)' 

6, = ( lhi"4j?o Ihl -'I4 + ip,, A*" yotpe*y) 

(5.43) 

V z  denoting the covariant derivative with respect to the connection r* (cf 4.25). 
Likewise the correct factor ordering of the supercharge is 

( 5.44) 

(5.45) 

(5.46) 

where D: denotes the covariant derivative with respect to A* and the brackets surround- 
ing the index a in (5.46) indicate that it has to be associated with the connection { },, 
rather than A* when forming the covariant derivative. For example, 

h 6kii'l) = if13/2(h('/4Vo( ,,"bA(I) b ) .  (5.47) 

(5.48) 

(5.49) 

Note that this operator is self-adjoint because of (5.34) but not real, so that all but 
the scalar solutions of the mass-shell condition are genuinely complex. 

The positivity of the scalar product 

(5.50) 

(5.51) 
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may be shown under the general conditions discussed in § 3. The charge form relevant 
here is defined by the conserved current implied by the mass-shell condition: 

j " ( l ~ , ,   CL^) = ihah[$T . v ; $ 2 - ( v b $ ? )  $21. (5.52) 

Both the generalised Lorentz condition 6Li = 0 and the mass-shell condition (for 
m2 > 0) follow from the variational principle based on the action 

s[+I= -(1/2fi2)((6A61 6 A i ) + m 2 ( 6 1 i ) ) .  (5.53) 

The Heisenberg equations of motion reduce in the formal classical limit defined 
in 0 3 to (5.4) and (5.22), respectively, and, for the even spin observables, to 

= 2y[~~CqF,cJ~~T1~l l  (5.54) 

T a b  = 2 , , ( a I c q ~  I C J  , i ~ ~ l l b ) .  ( 5 . 5 5 )  

Formally identical equations are also implied by the pseudoclassical equations ( 5 . 5 )  
and (5.23), respectively. 

6. Complex Hermitian metric 

The results of the two preceding sections can be generalised to the case of an asymmetric 
metric of the form 

= gub(X)+iBab(X) (6.1) 

with both g,b and Bob real and 

gab = gba B a b  = - B b a .  (6.2) 

Note that we are not going to complexify the spacetime manifold itself, but only its 
tangent bundle. The mathematical aspects of this procedure as well as its prospects 
as the basis of alternative theories of gravitation have been discussed by Kunstatter 
and Yates (1981). We expect that analogues of the supersymmtric coupling treated 
below exist also in the other possible algebraic extensions of the tangent bundle 
(Kunstatter et al 1983, Moffat 1984, Mann 1984). 

The supersymmetric Lagrangian is 

L,  = df? df?* yab(X)DXaD*Xb 5 
= l [gab(Xaxb + yayb)  - i yba ( - ( a [ * b )  - 2Ba&ayb 

- gab,,iaSbc - ( C C Z ~ } , , V ' T " ~  + Bab,ciaTbC -+B[ab,c]yaSbe 

(6.3) _ -  1 ~ a b ~ c d + L ~  4 ab,cdSabTcd]. 4gab,cd 

We note that this Lagrangian becomes, up to a total derivative, identical to (5 .2) ,  if 
gab = T a b  and Bab = q(Ab,, - Aa,b). The underlying reason is that 

qA, ( X ) X a = $qAa ( X ) ( DD* + D* D)X a 

yields the same action as 

-iiq[DAa(X)D*Xa + D*Aa(X)DXa] 

= -fiqAa,b(DXbD*Xa D*XbDXa) = iiq(Ab,a - Aa,b)DXaD*Xb 
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owing to the anti-self-adjointness of the supercovariant derivatives with respect to the 
natural scalar product in superspace. 

Substituting the equations of motion for the y variable, 

(6.4) b goby = -Badb -%B[ab,cy$b5*' 

into (6.3) we obtain 

(6.7) 

We have denoted by R'bcd ( f )  the curvature tensor of the connection f .  The semicolon 
in (6.9) denotes the covariant derivative with respect to the Levi-Civita connection { } g  

of g, and the barred and bracketed index in (6.8) are to indicate that f *  and { },, 
respectively, have to appear in the corresponding terms of the covariant derivative. 
Observe that the connection f is compatible with the metric g, whereas r is not. Neither 
connection is, in general, compatible with the metric ?ab. More precisely we have 

r 

Vay& = 3 i B [ a b , c ] '  

The equations of motion are the following: 

(6.10) 

X a + {  bnc] X h X r  =tih"'[y,,Rc,kr(r*)5'5*' - y ~ l R ' , k r ( r ) ~ ' ~ * ' ] X k  

- tRabcd ( f)XbSCd + ahabg,dVbR ',,k (f)(d('(*'(*k 

h 

i= 
(6.11) 

(6.12) 

1' 

-- ""- - i y a m g , R J k l m ( f ) ~ ' ( k ~ * '  
d s  

(6.13) 

We now introduce a complex orthonormal vierbein in the same manner as indicated 
in (5.26) with formally the same consequences as expressed in (5.29)-(5.31). The 
Hamiltonian is then 

H ,  = X b  -$gat R ibcd ( f ) ~ a ( * ' [ b ~ * d  (6.14) 

where X has the same formal appearance as in (5.33), with r given by (6.8). The 
supercharges are given by a remarkably simple expression, namely 

Q, = (pa + ipaPA*' 7 a 5 p ( * 7 ) [ a  (6.15) 

(6.16) 
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(cf (5.35) and (5.36)). The non-metricity tensor associated with the connection A is 

D c Y d b  = i(Bob;c+ Boc;b+Bcb;o). (6.17) 

Most of the quantum theoretical discussion of the preceding section applies also 
to the present case. The formulae (5.38)-(5.47) and (5.50)-(5.53) may be taken over 
virtually unchanged if interpreted in the appropriate way. 

The general structure of the mass operator is 

fiB = $1 h I - l / 4zo  1 h 1 l / 2 h  ab-& I h 1 - 114 + k (6.18) 

(6.19) 

(6.20) 

The exact factor ordering of k is rather intricate, as (4.32) generalises to 
A i- 

Ra[bcd] = - i V [ b f  'cd]+2f '[bcf ' d ] ~  (6.21) 

f 'bc 3gadB[db,c]. (6.22) 

Therefore g,,R'bcd(f)5a5*C6b5*d is different from -tga,Rlbcd ( f ) s a b s c d  even at the 
classical level. Note however that the operator versions of both expressions are 
self-adjoint, because the curvature tensor is Hermitian in the sense that 

gaiR'bcd(f) =gciRldab(f*)* (6.23) 

Because of the complicated structure of k we forego the computation of the explicit 
form of the Heisenberg equations of motion and their classical limit. 

7. Discussion 

The main results of this paper can be summarised as follows. First, free massive spin-1 
and spin-0 particles, realised by antisymmetric tensor fields, are the maximally (i.e. 
N = 1) supersymmetric states of definite 'fermion' number in relativistic quantum 
mechanics with N = 2 proper-time supersymmetry. Massless helicity-0 and helicity-1 
particles are even N = 2 supersymmetric, with one of the supersymmetries correspond- 
ing to the Abelian gauge invariance of an antisymmetric tensor field representation. 
Note that higher rank antisymmetric tensor gauge fields appear naturally in supergravity 
and string field theories and are serious candidates to number among the fundamental 
fields, as their classical equivalence to the standard representations does not survive 
at the second quantised level (Duff and van Nieuwenhuizen 1980). We find it remark- 
able that these fields, as well as the Dirac field, possess an underlying pseudoclassical 
particle dynamics. In this context it is appropriate to mention that there exist 'superpar- 
ticle' models corresponding to general PoincarC (Balachandran er al 1983) and super- 
PoincarC covariant field theories (Stern 1985, Green and Schwarz 1984). However 
these approaches differ significantly from the present one in that they employ concepts 
of spacetime (super) symmetry like representation matrices, spinors, etc, whereas we 
are dealing only with a classical position coordinate and its anticommuting counterpart. 

The second remarkable fact is the severe restriction imposed by supersymmetry on 
the possible couplings of the particles and, on the other hand, the richness of geometrical 
structure of the bosonic configuration space that is implied by these couplings. Maybe 
the most surprising result is that the minimal electromagnetic coupling is not compatible 
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with N = 2 supersymmetry. This result anticipates the inconsistency of the minimal 
electromagnetic coupling of gauge fields (Arnowitt and Deser 1963) and is indeed 
confirmed at the second quantised level by a no-go theorem of Weinberg and Witten 
(1980), whose proof was completed by LopuszLnski (1984): a massless particle of 
helicity I hl > 4 cannot carry a charge of an internal symmetry induced by a Lorentz- 
covariant conserved current. There is also no experiment that would contradict the 
vanishing of the electric charge of vector particles. Note that the weak gauge bosons 
W+ and W- belong to a non-Abelian gauge triplet of vector fields and that their 
electromagnetic interaction is part of the self-interaction of this triplet. This self- 
interaction does of course not show up in the linear field theory obtained by the 
quantisation of classical particles. N = 2 supersymmetry forbids also the minimal 
coupling to torsion in a Riemann-Cartan spacetime, in contrast to the Dirac case 
(Rumpf 1982). On the other hand, the couplings to scalar fields and complex Hermitian 
tensor fields are peculiar to N = 2 supersymmetry. 

The third type of interesting information is contained in the classical limit of the 
Heisenberg equations of motion for the position and spin observables of the particle 
associated with antisymmetric tensor fields. This classical limit is formulated in terms 
of real rather than Grassmann numbers and has to be distinguished conceptually from 
the underlying pseudoclassical mechanics. We feel that the results obtained are relevant 
for the analysis of particle motion in external fields, provided the latter are not so 
strong as to make the particle concept ill-defined. As an example we quote the apparent 
success of the Bargmann-Michel-Telegdi equation (Bargmann et a1 1959). Experi- 
mental evidence suggests that all fundamental N = 2 supersymmetric particles are 
massless. Since they possess only two independent polarisations (in the case of helicity 
IhJ > 0) they will not exhibit the full complexity of possible spin motions allowed by 
the classical limit equations. 

We close with some speculations about generalisations of the approach adopted 
in the present work. First, on the basis of the results of N = 1 and N = 2 proper-time 
supersymmetry, it is natural to conjecture that spin (helicity) s states will occur in 
N = 2s supersymmetric relativistic quantum mechanics. Second, it may be possible to 
characterise quantised supersymmetric jield theories by the geometric structure of the 
space of bosonic field configurations and the 'external field' couplings implied by this 
structure for the wavefunctional on this space. The relevance of geometrical concepts 
in field configuration space even for non-supersymmetric quantum field theory has 
been demonstrated recently (Vilkovisky 1984, Rumpf 1986b). The sought-after charac- 
terisation would imply 'supersymmetry without anticommuting variables' and thus 
have a status comparable to that of the definition of the Nicolai map (Nicolai 1980a, b). 

Appendix. Non-viability of operator formalism for minimal electromagnetic coupling 

The non-minimal character of the supersymmetric coupling to a vector field raises the 
question whether there exists a classical particle dynamics underlying the minimally 
coupled antisymmetric tensor fields. In the following we shall argue that this is not 
the case. We consider the minimally coupled Proca field +' with Lagrangian (Wentzel 
1949) 
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The resulting field equation 

(a ,  +ieA,)fab + ( m 2 / h 2 ) J l b  = 0 

does not simplify much if its own consequence 

(a, + ieA,)$" = fi( eh2/ m')Fabfab (A41 

is used. This is the main obstacle for the construction of a particle dynamics. The 
first step in this constructionA would be the definition of a :quantum Hamiltonian' 6. 
One would try to identify H with part of the operator H '  defined by the classical 
action S [ $ ]  via 

(A51 R * S [ ~ ]  = ( $ 1  - A!+ (m2/2)\+). 

fif=i[(p*-eA)2-(p*a -eA,)(p*b-eAb)e"ebt] (Ab) 

=i[(j?-eA)2-${p*u -eA,,p*,-eAb}e(aeb'+-feF,b~ub] (A7) 

In the case of the Lagrangian ( A l )  we have 

where e" are standard basis vectors and the dagger denotes Hermitian conjugation. 
If the right-hand side of (A4) were zero, we could discard the second term in the 
square bracket in (A7). The remainder is easily recognised as the Hamiltonian describ- 
ing a charged spinning particle with gyrom!gnetic ratio g = 1. This follows from the 
Heisenberg equations of motion for 2, p*, s u b .  (We have not addressed the question 
whether a pseudoclassical Lagrangian could be found yielding this quantum Hamil- 
tonian.) Indeed it is well known (Wentzel 1949) that g = 1 for the minimally coupled 
Proca field, and (A7) is presumably the shortest 'derivation' of this result. But the 
right-hand side of (A4) is not zero, and hence no sensible Heisenberg equations of 
motion for the particle observables can be derived. 

A considerable simplification occurs if the following non-minimal coupling is 
introduced. Consider 

~ i l , = ~ 2 4 ' 4 - ( e / 2 h ) F , b $ a * * b .  (A8) 

This results in 
A A  HI1= H'-ieFubSab 

and hence g = 2. This modification and its consequences for second quantisation have 
been studied in detail by Lee and Yang (1962). In our context (which is to exhibit 
the classical field equation as a first quantised theory) an interesting consequence of 
the modification is 

A"( p ,  - eA,)ea = ~ehFaC,,e, .  

The right-hand side of (A101 vanishes in vacuo (F"',, = 0). In this case one may conclude 

( A l l )  *'e"( 8, - eA,) = 0 

fi"=i[(p*-eA)'- e h ~ , ~ P ] .  (A121 

= i e { F " , ,  xb}+~eh?ladFbc,dSbc (A131 

gab = e(F",@" FbcgaC). (A14) 

if $ satisfies fir'$ =fm2$.  Thus ( A l l )  may be considered as a subsidiary condition 
on the space of solutions of the classical field equation. Hence on this space 

This yields the Heisenberg equations of motion 
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In the classical limit these equations are very familiar: (A13) describes obviously 
the translational motion of a g = 2 particle. Equation (A14) is formally identical with 
the spin equation of motion obtained from the Dirac equation. In the case of constant 
Fah it is a special case of the Bargmann-Michel-Telegdi equation (Bargmann et a1 
1959). However this derivation works only in uucuo and on mass shell, and a pseudo- 
classical Lagrangian for H" involving the appropriate degrees of freedom apparently 
does not exist (although (A12) is formally identical with the Dirac particle Hamiltonian 
(Rumpf 1982)). 
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